Association of plastin 3 expression with disease severity in spinal muscular atrophy only in postpubertal females.

نویسندگان

  • George Stratigopoulos
  • Patricia Lanzano
  • Liyong Deng
  • Jiancheng Guo
  • Petra Kaufmann
  • Basil Darras
  • Richard Finkel
  • Rabi Tawil
  • Michael P McDermott
  • William Martens
  • Darryl C Devivo
  • Wendy K Chung
چکیده

OBJECTIVE To investigate the potential association of plastin 3 (PLS3) expression levels in the blood with disease severity in spinal muscular atrophy (SMA). DESIGN Measurement of PLS3 messenger RNA levels in the blood of patients with types I, II, and III SMA. SETTING Pediatric Neuromuscular Clinical Research Network SMA Natural History study. PARTICIPANTS A cohort of 88 patients of both sexes who had SMA. MAIN OUTCOME MEASURES Levels of PLS3 messenger RNA in relation to SMA type and SMN2 copy number. RESULTS Prepubertal female and younger male (<11 years) patients had approximately 2-fold-higher levels of PLS3 expression than did postpubertal female and older male (≥11 years) patients, respectively (P ≤ .001). Expression of PLS3 in male patients did not correlate with SMA clinical type or SMN2 copy number in either age group (P > .10). In postpubertal female patients, PLS3 expression was greatest in patients with type III SMA, was intermediate in patients with type II SMA, and was lowest in patients with type I SMA. Expression of PLS3 correlated with SMA type, SMN2 copy number, and the gross motor function measure only in postpubertal female patients. CONCLUSION The PLS3 gene may be an age- and/or puberty-specific and sex-specific modifier of SMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

Plastin 3 Promotes Motor Neuron Axonal Growth and Extends Survival in a Mouse Model of Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease. SMA is caused by mutations in the survival motor neuron gene (SMN1), leading to reduced levels of SMN protein in the CNS. The actin-binding protein plastin 3 (PLS3) has been reported as a modifier for SMA, making it a potential therapeutic target. Here, we show reduced levels of PLS3 protein in the brain and spinal c...

متن کامل

SMN1 and NAIP genes deletions in different types of spinal muscular atrophy in Khuzestan province, Iran

 Background: Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disease. It is a neuromuscular disorder caused by degenerative of lower motor neurons and occasionally bulbar neurons leading to progressive limb paralysis and muscular atrophy. The SMN1 gene is recognized as a SMA causing gene while NAIP has been characterized as a modifying factor for the clinical ...

متن کامل

Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse

Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this l...

متن کامل

Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy.

Homozygous deletion of the survival motor neuron 1 gene (SMN1) causes spinal muscular atrophy (SMA), the most frequent genetic cause of early childhood lethality. In rare instances, however, individuals are asymptomatic despite carrying the same SMN1 mutations as their affected siblings, thereby suggesting the influence of modifier genes. We discovered that unaffected SMN1-deleted females exhib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of neurology

دوره 67 10  شماره 

صفحات  -

تاریخ انتشار 2010